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Figure 1: Maximum likelihood coordinates can be defined for arbitrary simple polygons with interior points (b,c). The explicit form of their
gradient allows to compute the area and angle distortion (e,f) of the deformation of an image obtained by moving the polygon vertices (a,d).

Abstract
Any point inside a d-dimensional simplex can be expressed in a unique way as a convex combination of the simplex’s vertices,
and the coefficients of this combination are called the barycentric coordinates of the point. The idea of barycentric coordinates
extends to general polytopes with n vertices, but they are no longer unique if n> d+1. Several constructions of such generalized
barycentric coordinates have been proposed, in particular for polygons and polyhedra, but most approaches cannot guarantee
the non-negativity of the coordinates, which is important for applications like image warping and mesh deformation. We present
a novel construction of non-negative and smooth generalized barycentric coordinates for arbitrary simple polygons, which ex-
tends to higher dimensions and can include isolated interior points. Our approach is inspired by maximum entropy coordinates,
as it also uses a statistical model to define coordinates for convex polygons, but our generalization to non-convex shapes is
different and based instead on the project-and-smooth idea of iterative coordinates. We show that our coordinates and their
gradients can be evaluated efficiently and provide several examples that illustrate their advantages over previous constructions.

CCS Concepts
• Computing methodologies → Parametric curve and surface models; • Mathematics of computing → Convex optimization;

1. Introduction

Given a polytope Ω in Rd with n ≥ d +1 vertices v1, . . . ,vn ∈ Rd ,
a set of functions λi : Ω →R, i = 1, . . . ,n is called a set of general-
ized barycentric coordinates, if they allow to write any v ∈ Ω as an
affine combination of the vertices vi with coefficients λi(v), that is,

n

∑
i=1

λi(v)vi = v,
n

∑
i=1

λi = 1. (1)

For most applications, it is further indispensable that the coordinate
functions λi satisfy the Lagrange property

λi(v j) = δi, j, i, j = 1, . . . ,n, (2)

since this implies that any data f1, . . . , fn given at the vertices of
Ω can be interpolated by the function f (v) = ∑

n
i=1 λi(v) fi. Another

desirable property is that the generalized barycentric coordinates

should be non-negative for any v ∈ Ω,

λi(v)≥ 0, i = 1, . . . ,n, (3)

so that the interpolated values f (v) are guaranteed to be in-
side the convex hull of the data. Moreover, all λi(v) should de-
pend smoothly both on v and the vertices vi, and reduce to k-
dimensional generalized barycentric coordinates, if restricted to the
k-dimensional faces of Ω. In particular, they should be linear over
the edges of a planar polygon and over the faces of a triangle mesh.

Generalized barycentric coordinates have numerous applica-
tions, including geometric modelling [LD89, LS07], mesh pa-
rameterization [Flo97, Flo03], morphing [FG99], colour interpo-
lation [MBLD02], rendering [HT04], image warping [WSHD07],
image cloning [FHL∗09], mesh deformation [JSW05, JMD∗07,
LKCOL07, LS08, LLCO08, TMB18, TB22], finite element meth-
ods [Wac75, MLD05, GRB16], and many more [HS17].
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1.1. Related work

Barycentric coordinates were discovered by Möbius [Möb27], who
not only showed that they are unique if Ω is a d-dimensional sim-
plex, but also derived an explicit formula for these simplex coordi-
nates. Starting with the work of Kalman [Kal61] and Wachspress
[Wac75], the idea of barycentric coordinates has been extended to
non-convex polygons and polytopes, and many kinds of general-
ized barycentric coordinates were proposed. A good overview can
be found in the surveys by Floater [Flo15] and Anisimov [Ani17].

The different constructions of generalized barycentric coordi-
nates can mainly be divided in two groups. On the one hand,
there are closed-form constructions, which provide the coordinates
in terms of an algebraic expression that can be evaluated effi-
ciently for any v ∈ Ω. Particularly simple formulas are known
for Wachspress [MBLD02] and discrete harmonic coordinates
[PP93, EDD∗95]. These coordinates are well-defined only for con-
vex polygons and convex polytopes [War96, WSHD07, JSWD05,
JLW07] and turn out to be special cases of a whole family of
three-point coordinates [FHK06,AHS19]. This family also includes
mean value coordinates [Flo03, HF06], which come with the ad-
vantage of being well-defined for non-convex polygons and poly-
hedra, too [FKR05, JSW05]. Whole families of barycentric coor-
dinates for non-convex polygons and polyhedra were constructed
by [BLTD16] and [YS19], but just like metric [MLD05], Poisson
[LH13], and Gordon–Wixom coordinates [Bel06], they may take
on negative values at certain v ∈ Ω. Some constructions guarantee
the non-negativity of the coordinates, but at the price of not de-
pending smoothly on either v ∈ Ω [LKCOL07, MLS11] or the ver-
tices vi [APH17]. An exception are iterative coordinates [DCH20],
which modify mean value coordinates iteratively until they are non-
negative, which is proven to be the case after a finite number of it-
erations. However, the number of required iterations is not known
a priori for a given polygon and may be on the order of O(n2), so
that the evaluation of these coordinates becomes very slow.

On the other hand, there are computational constructions, where
the coordinates are defined as the solution of a non-linear opti-
mization problem with conditions (1), (2), and (3) as constraints.
The resulting coordinates have all desired properties, but must be
treated numerically. This includes harmonic [JMD∗07] and local
barycentric coordinates [ZDL∗14, TDZ19], which are usually ap-
proximated by piecewise linear functions over a dense triangulation
T of Ω and require to solve a global problem to determine the val-
ues of the functions at the vertices of T . Another construction from
this category are maximum entropy coordinates [HS08], which can
be evaluated at any v ∈ Ω by solving a local convex optimization
problem, but this approach relies on the choice of certain prior func-
tions, and it is not clear how to choose the latter for a given polygon,
so that shape artefacts in the coordinates are avoided.

1.2. Contribution

We propose a novel construction of non-negative and smooth com-
putational barycentric coordinates. Like maximum entropy coordi-
nates (MEC), they are derived from a statistical model, but instead
of maximizing the entropy of a discrete probability distribution, we
propose to maximize the likelihood. In their basic form (Sec. 2),

these maximum likelihood coordinates (MLC) satisfy (1) and are
non-negative over the convex hull of the vertices vi, but they satisfy
the Lagrange property (2) only at the corners of the convex hull,
that is, at the vertices of a convex polygon or polytope, akin to MEC
with constant or Gaussian priors [SW07]. Another similarity with
MEC is that MLC can be computed efficiently at any v ∈ IntΩ after
finding the minimum of a convex function in d variables with few
iterations of Newton’s method. As for MEC [MSA15], this mini-
mum can also be used to determine the gradients of the coordinates
at v with a simple formula (Sec. 2.1).

To extend the construction of MLC to non-convex polygons,
we borrow the project-and-smooth idea from iterative coordinates
[DCH20] (Secs. 3.1 and 3.2), and we explain how to include inte-
rior points (Sec. 3.4) and how to generalize them to higher dimen-
sions (Sec. 3.5). Our comparisons (Sec. 4) show that MLC outper-
form other coordinates in the context of image deformation and that
the results get even better when using a novel scaling approach that
takes the interior distances from v ∈ IntΩ to the vertices vi into ac-
count and improves the shape of the coordinate functions (Sec. 4.1).
We conclude by discussing limitations and future work (Sec. 5).

2. Convex polygons

Let us start with the case when Ω is a planar convex polygon with n
vertices v1, . . . ,vn ∈R2. For any v∈ IntΩ, we define the barycentric
coordinates λ = λ(v) ∈ Rn by maximizing

L(λ) =
n

∏
i=1

λi, (4)

subject to the constraints
n

∑
i=1

λi = 1,
n

∑
i=1

λivi = v, λi ≥ 0, i = 1, . . . ,n. (5)

The objective function L is motivated by the shape of likelihood
functions which occur in statistics. To solve this nonlinear opti-
mization problem, we first observe that L(λ) > 0 if all coordi-
nates λi are positive, while L(λ) = 0 if at least one λi vanishes.
Therefore, we can focus on the set of positive coordinates and max-
imize instead of L(λ) its logarithm,

ℓ(λ) = logL(λ) =
n

∑
i=1

logλi, (6)

because the logarithm is strictly increasing. This is somewhat sim-
pler, because ℓ is strictly concave over the convex set of positive
coordinates that satisfy the constraints in (5). Therefore, maximiz-
ing ℓ is equivalent to determining a constrained local extremum of
ℓ, which in turn can be found with the method of Lagrange multi-
pliers. The latter states that a local extremum of ℓ under the con-
straints in (5) is characterized by the existence of some φ0 ∈ R and
φ = (φ1,φ2)

T ∈ R2, such that

∂

∂λi
ℓ(λ) =

1
λi

= φ0 +φ
T(vi − v), i = 1, . . . ,n.

Multiplying both sides of this identity by λi, summing over i, and
using (5), we get

n =
n

∑
i=1

λi(φ0 +φ
T(vi − v)) = φ0

n

∑
i=1

λi +φ
T

n

∑
i=1

λi(vi − v) = φ0,
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so that

λi =
1

n+φT(vi − v)
, i = 1, . . . ,n. (7)

It remains to find φ, such that the second constraint in (5) holds,
that is,

n

∑
i=1

λi(vi − v) =
n

∑
i=1

vi − v
n+φT(vi − v)

= 0. (8)

This condition, however, is equivalent to finding a stationary point
of the function

F(φ) =−
n

∑
i=1

log(n+φ
T(vi − v)), (9)

defined over the set

Φ = {φ ∈ R2 : n+φ
T(vi − v)> 0, i = 1, . . . ,n}

of all φ that yield positive coordinates λi by (7). Note that Φ is the
interior of the polar dual [JSWD05] of Ω with respect to v, scaled
by −n, and therefore bounded and convex. Since F is strictly con-
vex and diverges to ∞ at the boundary of Φ, it is clear that the
unique stationary point of F is at the global minimum of F . Hence,
instead of solving the original constrained nonlinear optimization
problem in n variables λi, we just have to minimize a convex func-
tion in the two variables φ1,φ2, which can be done efficiently with
few iterations of Newton’s method, using φ

(0) = (0,0)T ∈ Φ as ini-
tial guess (see Algo. 1 in Appendix A.1). Once the optimal φ = φ⋆

is found, the basic maximum likelihood coordinates (BMLC) λi are
computed using (7).

Like all barycentric coordinates that are non-negative over IntΩ,
BMLC have a unique continuous extension to ∂Ω, which is linear
along the edges of Ω and satisfies the Lagrange property [FHK06,
Corollary 2.3]. Hence, as v ∈ IntΩ converges to v⋆ ∈ ∂Ω, say
v⋆ = (1−µ)v j +µv j+1 for some j and 0 ≤ µ ≤ 1, the BMLC of
v converge to λ j = 1−µ, λ j+1 = µ, and λi = 0 for i ̸= j, j+1.

2.1. Gradients

Since F and thus also the minimum of F depend smoothly on v,
BMLC are smooth (i.e., C∞) over IntΩ, and we can even deter-
mine their gradients without too much effort (see Algo. 2 in Ap-
pendix A.1). To this end, let φ⋆ = φ(v) denote the minimum of F ,
as a function of v, and recall from (8) that

G(φ,v) =
n

∑
i=1

vi − v
n+φT(vi − v)

vanishes at (φ⋆,v) for any v ∈ IntΩ. Hence, the derivative of
G(φ(v),v) with respect to v vanishes, too, and we get, by the mul-
tivariate chain rule,

d
dv

G(φ(v),v) =
∂

∂φ
G(φ⋆,v)

d
dv

φ(v)+
∂

∂v
G(φ⋆,v) = 0, (10)

where

∂

∂φ
G(φ,v) =

n

∑
i=1

−(vi − v)(vi − v)T

(n+φT(vi − v))2 ,

∂

∂v
G(φ,v) =

n

∑
i=1

(vi − v)φT− (n+φ
T(vi − v))I2

(n+φT(vi − v))2 ,

0

0.5

1.0

Figure 2: Examples of BMLC for a convex and a concave polygon.

with Ik denoting the k-dimensional identity matrix. Likewise, con-
sidering the formula for λi in (7) as a function of φ and v, we have

d
dv

λi(φ(v),v) =
∂

∂φ
λi(φ⋆,v)

d
dv

φ(v)+
∂

∂v
λi(φ⋆,v), (11)

where

∂

∂φ
λi(φ,v)=

−(vi − v)T

(n+φT(vi − v))2 ,
∂

∂v
λi(φ,v)=

φ
T

(n+φT(vi − v))2 .

Solving (10) for d
dv φ(v) and substituting the result in (11), we fi-

nally get, after some simplifications,

∇λi =
( d

dv
λi(φ(v),v)

)T
= λ

2
i (φ⋆−GvG−1

φ (vi − v)), (12)

where the two 2×2 matrices

Gφ =
n

∑
j=1

λ
2
j(v j − v)(v j − v)T, Gv =

n

∑
j=1

λ
2
j φ⋆(v j − v)T− I2

do not depend on i, so that GvG−1
φ needs to be computed only once

for every v ∈ IntΩ. Note that Gφ is invertible, because Gφ =UTU ,
where the rows of the matrix U ∈Rn×2 are λi(vi − v)T, i= 1, . . . ,n.
Since these are the vertices of a non-degenerate polygon, it follows
that Gφ is the Gram matrix of two linearly independent vectors
X ,Y ∈ Rn, namely the two columns of U = (X ,Y ).

2.2. Higher dimensions

The formulation of BMLC naturally extends to convex polytopes in
Rd . The formula for the coordinates in (7) still applies, except that
φ is d-dimensional in general and must be found by minimizing the
d-variate analogue of the function F in (9). Likewise, the gradient
of λi can be computed as above, but with d×d matrices Gφ and Gv.

3. Non-convex polygons

While BMLC satisfy all the key properties of generalized barycen-
tric coordinates if Ω is convex and are well-defined and non-
negative over the convex hull Conv(Ω) of a concave polygon, they
loose the Lagrange property at the vertices and the linearity along
the edges that do not belong to Conv(Ω) (see Fig. 2). A similar
behaviour is known for maximum entropy coordinates (MEC) with
constant or Gaussian priors [SW07]. For MEC, this can be fixed
by using special edge-aware prior functions [HS08], but we need a
different strategy for extending BMLC to non-convex polygons.

Our extension is based on the following procedure, which is in-
spired by the construction of iterative coordinates [DCH20].
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Figure 3: Individual steps of transforming Ω into Ω̂. To get the Lagrange property, we translate Ω by −v and project the vertices to the unit
circle (P0). To get the linearity along the edges, we further smooth Ω̊ with two averaging steps (A1, A2) and subsequent projections (P1, P2).

Let V = (v1, . . . ,vn) ∈ R2×n be the matrix whose columns are
the vertices of a non-convex polygon Ω. Given v ∈ IntΩ, we first
translate Ω by −v to get the polygon Ω̃ with vertices Ṽ =V − veT,
where e = (1, . . . ,1)T ∈ Rn. Since barycentric coordinates are in-
variant under translations, any barycentric coordinates of the ori-
gin w.r.t. Ω̃ are also barycentric coordinates of v w.r.t. Ω and vice
versa. We then apply some non-negative matrix M ∈ Rn×n, possi-
bly depending on v and v1, . . . ,vn, with at least one positive entry
per row, to get Ω̂ with vertices V̂ = Ṽ M, which can also be seen as
transforming the two vectors consisting of the x- and the y- coordi-
nates of the vertices ṽi with MT. Any barycentric coordinates of the
origin w.r.t. Ω̃ can then be turned into barycentric coordinates of v
w.r.t. Ω by transforming them with M and normalizing the result.

Lemma 1 Given a simple polygon Ω with vertices V and v ∈ IntΩ,
let Ω̂ be the polygon with vertices V̂ = (V − veT)M and λ̂ be some
positive barycentric coordinates of the origin v̂ = 0 with respect to
Ω̂. Then λ = w/W , where w = Mλ̂ and W = w1 + · · ·+ wn, are
positive barycentric coordinates of v with respect to Ω.

Proof It follows from the properties of M and λ̂ that w > 0 and W =
eTw > 0, hence λ > 0 and ∑

n
i=1 λi = eTλ = eTw/W = 1. Moreover,

since ∑
n
i=1 λ̂iv̂i = V̂ λ̂ = v̂ = 0, we have

n

∑
i=1

λivi =V λ =V
w
W

=
V Mλ̂

W
=

V̂ λ̂

W
+

veTMλ̂

W
= v

eTw
W

= v,

which concludes the proof.

Lemma 1 provides a recipe for defining maximum likelihood co-
ordinates (MLC) for non-convex polygons. For any v ∈ IntΩ,

1. transform Ω into Ω̂, using a suitable matrix M;
2. compute the BMLC λ̂ of the origin w.r.t. Ω̂;
3. derive λ = λ(v) from λ̂ using again M.

While this approach guarantees that the coordinates λ are barycen-
tric and positive, the difficult part is finding suitable matrices
M = M(v), such that the coordinates have the Lagrange property
at the vertices and are piecewise linear along the edges of Ω. Both
can be achieved by the project-and-smooth idea of iterative coordi-
nates [DCH20], which are basically defined by the same procedure.

However, iterative coordinates use the circumcentre coordinates
of the origin w.r.t. Ω̂ in step 2. These are guaranteed to be positive
only if Ω̂ is a convex cyclic polygon, which in turn may require
O(n2) smoothing steps. For MLC, step 2 gives positive coordinates

Figure 4: Examples of BMLC (left), MLC with projection (middle),
and MLC with projection and smoothing (right).

even if Ω̂ is a self-intersecting polygon, as long as 0 ∈ Conv(Ω̂),
because the definition of BMLC actually depends only on the ver-
tices of the polygon, but not on how they are connected by edges.

3.1. Projection

The Lagrange property at the vertices can be restored (see Fig. 4)
by projecting the translated vertices ṽi to the unit circle around the
origin (see Fig. 3), that is, by using as M the diagonal projection
matrix

P0 = diag
(

1
r1
, . . . ,

1
rn

)
,

where ri = ∥ṽi∥= ∥vi − v∥.

Theorem 1 The maximum likelihood coordinates λ(v) defined by
M = P0 possess the Lagrange property at the vertices of Ω.

Proof If v ∈ IntΩ converges to v j, then r j converges to 0, while the
other rk converge to ∥vk − v j∥ > 0. Consequently, the ratios r j/rk
converge to δk, j for all k = 1, . . . ,n. Therefore,

lim
v→v j

λi(v) = lim
v→v j

λ̂i/ri

∑
n
k=1 λ̂k/rk

=
limv→v j

(
λ̂ir j/ri

)
∑

n
k=1 limv→v j

(
λ̂kr j/rk

)
=

δi, j limv→v j λ̂i

∑
n
k=1 δk, j limv→v j λ̂k

= δi, j
limv→v j λ̂i

limv→v j λ̂ j
= δi, j,

because all λ̂k are bounded and λ̂ j > 0, even in the limit.
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Figure 5: Examples of normalized gradient fields of MLC with pro-
jection and smoothing (cf. Fig. 4).

3.2. Smoothing

To restore the linearity along the edges (see Fig. 4), we apply the
following smoothing process to the projected vertices v̊i = ṽi/ri
(see Fig. 3). We first average for each edge E j = [v j,v j+1] of Ω

the outward-pointing unit normals of the circular arc E̊ j between
v̊ j and v̊ j+1 in an integral sense. Basic calculations reveal that this
average can be expressed as a linear combination of the endpoints,

s j =
∫

E̊ j

xdx
/∫

E̊ j

1dx = σ j,1v̊ j +σ j,2v̊ j+1, (13)

with weights

σ j,1 = σ j,2 = σ j =
tan α j

2
α j

=
1− v̊Tj v̊ j+1

α jθ j
,

where α j is the length of E̊ j and θ j = sinα j is the area of the par-
allelogram spanned by v̊ j and v̊ j+1. Note that s j = v̊ j = v̊ j+1 in the
limit, as α j converges to 0. Moreover, as α j tends to π, σ j diverges
to +∞, while all other σk converge to finite values, which is crucial
for getting MLC that are linear along the edges. We then project the
s j back to the unit circle, average them with their predecessors, and
project again. That is, we compute the vertices v̂i of Ω̂ as

v̂i = ti/∥ti∥, ti =
(
si−1/∥si−1∥+ si/∥si∥

)
/2,

where indices are considered cyclically over the range [1, . . . ,n].
This is equivalent to using as M the matrix P0A1P1A2P2, where

A1 =


σ1,1 0 · · · σn,2
σ1,2 σ2,1 · · · 0

...
. . .

. . .
...

0 · · · σn−1,2 σn,1

 , A2 =
1
2


1 1 · · · 0
...

. . .
. . .

...
0 · · · 1 1
1 · · · 0 1

 ,

P1 = diag(1/∥s1∥, . . . ,1/∥sn∥), and P2 = diag(1/∥t1∥, . . . ,1/∥tn∥).

Theorem 2 The maximum likelihood coordinates λ(v) defined by
M = P0A1P1A2P2 are linear along the edges of Ω.

Proof If v ∈ IntΩ converges to v⋆ = (1− µ)v j + µv j+1 for some j
and 0 < µ < 1, then v̊ j converges to −v̊ j+1 and α j and θ j converge
to π and 0, respectively. And even though σ j diverges to +∞, s j
is well-defined, even in the limit, as the halfway vector between v̊ j

and v̊ j+1 with length ∥s j∥= 2
α j

sin α j
2 . Therefore, all ∥tk∥ converge

to positive values, so that Conv(Ω̂) is a well-defined convex cyclic
polygon which contains the origin. It follows that λ̂ > 0, even in the
limit, and also u = P1A2P2λ̂ > 0.
We further notice that θ jσ j converges to 2/π as v approaches v⋆,
while θ jσk converges to 0 for k ̸= j. Consequently, θ jA1u con-
verges to the vector ẘ ∈ Rn with ẘ j = ẘ j+1 = 2u j/π and ẘk = 0

Figure 6: Area and angle distortion of the MLC deformation in
Fig. 9: Jacobian determinant (left) and MIPS energy (right).

for k ̸= j, j+1. Since

lim
v→v⋆

λ(v) = lim
v→v⋆

θ jMλ̂

θ jEMλ̂
= lim

v→v⋆

P0(θ jA1u)
EP0(θ jA1u)

=
P0ẘ

EP0ẘ
,

this implies

lim
v→v⋆

λi(v) =

ẘi

ri
ẘ j

r j
+

ẘ j+1

r j+1

=


1/µ

1/µ+1/(1−µ) = 1−µ, i = j,

1/(1−µ)
1/µ+1/(1−µ) = µ, i = j+1,

0, i ̸= j, j+1,

because r j and r j+1 converge to µe and (1 − µ)e, respectively,
where e = ∥vi+1 − vi∥.

3.3. Gradients

Since all ingredients of the projection and the smoothing process
depend smoothly on v, it is clear that MLC with projection and
smoothing are smooth over IntΩ, with a continuous extension to
∂Ω that is linear along the edges of Ω. The gradients of MLC can
be derived, essentially with the same idea as in Sec. 2.1 and by care-
fully applying the chain rule several times to take care of the pro-
jection and smoothing operators. The details and pseudo code for
computing MLC and their gradients can be found in Appendix A.2.

Fig. 5 shows three examples of the normalized gradients of MLC
with projection and smoothing at those nodes of a regular grid that
are inside the non-convex polygon from Fig. 4. Moreover, we can
use the gradients to compute the distortion of the barycentric map-
ping from a source polygon Ω to a target polygon Ω

′,

f : Ω → Ω
′, f (v) =

n

∑
i=1

λi(v)v
′
i , (14)

at any point v ∈ IntΩ. For example, Fig. 6 shows the determinant
det(J f ) of the Jacobian matrix

J f (v) =
n

∑
i=1

v′i∇T
λi(v)

of f to visualize the area distortion (no area distortion corresponds
to the value 1 and negative values would indicate fold-overs) of the
MLC deformation in Fig. 9 (note that the source image in Fig. 9 was
scaled by a factor of 2/3 w.r.t. the target images for layout reasons),
as well as the MIPS energy trace(J f

TJ f )/det(J f ) to illustrate the
angle distortion of this mapping (local conformality corresponds to
the smallest possible value 2). Another example of such distortion
plots can be found in Fig. 1.
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Figure 7: Examples of MLC for a polygon with an interior point.

3.4. Interior points

An interesting feature of the MLC construction is that it allows to
include isolated interior points. In fact, Theorem 1 does not depend
on the vertices forming an actual polygon Ω and also holds for any
set of isolated vertices. Hence, if we define the MLC for a given
polygon Ω and m additional interior points vn+1, . . .vn+m ∈ IntΩ

by projecting all vertices as in Sec. 3.1 and smoothing only the
vertices of Ω as in Sec. 3.2, then we get generalized barycentric
coordinates that satisfy all the key properties, except that they are
only continuous at the interior points (see Fig. 7).

3.5. Higher dimensions

As for convex polygons, the construction of MLC extends to non-
convex polytopes in Rd . The generalizations of Lemma 1 and The-
orem 1 from 2D to any dimension d is trivial, so let us focus on the
smoothing process.

In the first step, we average the outward-pointing unit normals of
the hyperspherical simplices that correspond to the simplicial faces
of the polytope Ω and express them as a linear combination of the
vertices that we get by projecting the faces of Ω. For example, if
T = [v1,v2,v3] is a triangle of a polyhedron Ω in R3 and T̊ is the
spherical triangle spanned by the projected vertices v̊1, v̊2, v̊3, then
we need to find the weights σ1,σ2,σ3, such that

s =
∫

T̊
xdx

/∫
T̊

1dx = σ1v̊1 +σ2v̊2 +σ3v̊3. (15)

With α denoting the area of T̊ and θ = |v̊1 · (v̊2 × v̊3)| the volume
of the parallelepiped spanned by v̊1, v̊2, v̊3, it follows from [FKR05,
Theorem 2] that

σ1 =
β2,3 +β1,2 n1,2 ·n2,3 +β3,1 n3,1 ·n2,3

2αθ
sinβ2,3

and similarly for σ2 and σ3, with βr,s denoting the (unsigned)
angle between v̊r and v̊s and nr,s = (v̊r × v̊s)/∥v̊r × v̊s∥ being a
unit normal of the triangle [0, v̊r, v̊s]. The computation of the s j
for all m triangles Tj = [v j1 ,v j2 ,v j3 ] of Ω can be expressed as
S = (s1, . . . ,sm) = V̊ A1, where the n×m matrix A1 has exactly 3
non-zero entries per column, namely (A1) jl , j = σ jl , for l = 1,2,3.

In the next step, we average, for each vertex vi of Ω, the normal-
ized vectors s j of the mi faces adjacent to vi, with indices in Ni,

ti =
1
mi

∑
j∈Ni

s j/∥s j∥,

and normalize again to get v̂i = ti/∥ti∥. As in Sec. 3.2, this can be
expressed as V̂ = SP1A2P2. For example, if Ω is a polyhedron in
R3, then the m× n matrix A2 has the same structure as AT

1 , with 3
non-zero entries per row, namely (A2) j, jl = 1/m jl , for l = 1,2,3.

Figure 8: Deformation of a source mesh (left) with 3D MLC (right).

At least in 3D, the proof of Theorem 2 can be generalized nicely.
As v ∈ IntΩ converges to a point inside a triangle Tj = [v j1 ,v j2 ,v j3 ]
of Ω, say v⋆ = µ1v j1 + µ2v j2 + µ3v j3 for some µ1,µ2,µ3 > 0 with
µ1 + µ2 + µ3 = 1, the area α j and the volume θ j converge to 2π

and 0, respectively, and while

lim
v→v⋆

θ j(σ j1 ,σ j2 ,σ j3) =
1
2
(sinβ j2, j3 ,sinβ j3, j1 ,sinβ j1, j2), (16)

all other scaled weights θ jσkl for k ̸= j and l = 1,2,3 converge to 0.
Consequently, θ jA1P1A2P2λ̂ converges to a vector ẘ ∈ Rn, whose
3 non-zero entries are the values on the right hand side of (16),
scaled by a common positive factor. Since these are, after normal-
ization, the 2D barycentric coordinates of the origin 0 w.r.t. the tri-
angle limv→v⋆ [v̊ j1 , v̊ j2 , v̊ j2 ], it follows from Lemma 1 with M = P0
that the MLC coordinates λ converge to the barycentric coordinates
µ1,µ2,µ3 of v w.r.t. Tj and are thus linear along the faces of Ω.

An example of a cage-based deformation using 3D MLC with
projection and smoothing is shown in Fig. 8.

4. Results

One of the main applications of 2D barycentric coordinates is im-
age deformation, which can be achieved by enclosing the source
image with a source polygon Ω and then moving its vertices
v1, . . . ,vn to get a target polygon Ω

′ with vertices v′1, . . . ,v
′
n. The

deformed target image is then generated by applying the barycen-
tric mapping f in (14). Due to the properties of the barycentric
coordinates λ, the mapping f is interpolatory, i.e., f (vi) = v′i for
i = 1, . . . ,n, and it linearly maps the edges of Ω to the edges of Ω

′.

It is well-known that negative coordinates can lead to artefacts
in the deformed image. For example, the negative values (in red) of
the mean value coordinates (MVC) associated with the two vertices
near the tail of the butterfly in Fig. 9 cause the target image to fold
over (bottom insets). For iterative coordinates (IC), both the neg-
ative values and the fold-overs disappear after 4 iterations. How-
ever, unexpected deformation results may also stem from shape
artefacts of the coordinate functions. For example, the maximum
entropy coordinates (MEC) associated with the two vertices near
the tips of the butterfly’s antennas have a local maximum of sig-
nificant height (∼ 0.13 in this case) inside the front wing, which
lead to artefacts (top insets) that are not present in the MLC-based
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source MVC IC (k = 4) MLC MEC HC

Figure 9: Deformation of a source image (left) with different barycentric coordinates, zoom-ins, and examples of basis functions (insets).
While the MVC-based deformation has fold-overs, caused by negative functions values (bottom), and the MEC-based deformation has
distortions, related to local maxima of some coordinate functions (top and bottom), the results using IC, MLC, and HC are free of artefacts.

MVC IC (k = 4) MLC SMLC MEC HC

Figure 10: Comparison of different barycentric coordinate func-
tions for a polygon with two very sharp concave vertices.

deformation, which in turn is similar in quality to the deformation
obtained using harmonic coordinates (HC).

A more extreme example of this phenomenon can be seen in
Fig. 10. The MVC functions corresponding to vertices next to a
concave vertex with a big interior angle (close to 2π) can have big
local maxima (greater than 1, in brown) that lead to very nega-
tive local minima (in red) of other coordinate functions and may
cause unwanted deformation results. These artefacts disappear for
IC after 4 iterations. Local maxima (smaller than 1) also happen for
MEC (top), but instead of causing local minima, they induce severe
shape artefacts of neighbouring coordinate functions (bottom).

One explanation for this problem is that the prior functions,
which are used to guarantee the linearity of MEC along the edges of
Ω, are normalized products of functions ρi that are zero on the edge
Ei of Ω and grow with increasing distance to Ei, independently of
the other edges. Due to this locality, MEC are not “aware” of the
global shape of Ω. For MLC, the situation is similar, but to a lesser
extent, and it can be improved with a simple, yet effective approach.

4.1. Scaling

To enrich MLC with a certain global shape awareness, we add an-
other scaling step to the project-and-smooth procedure from Sec. 3.
These scaled maximum likelihood coordinates (SMLC) are defined
by using the matrix M = P0A1P1A2P2D in the basic MLC recipe,
where D= diag(1/d1, . . . ,1/dn) with di denoting some interior dis-
tance between v and vi. In our examples, we used biharmonic dis-
tances [LRF10], but also the geodesic distance inside Ω [Aro89]

Figure 11: Comparison of MLC (left) and SMLC (right) associated
with a concave vertex of a non-convex polygon.

could be used. Note that the additional scaling of the projected and
smoothed vertices does not change the fact that 0 ∈ Conv(Ω̂), so
that we can still compute valid BMLC λ̂ of the origin w.r.t. Ω̂.

Using the same arguments as before, it is clear that SMLC are
as smooth as the functions used to compute the distances di, and
as long as the derivatives of these distances can be evaluated in
some way, then we can also compute the derivatives of SMLC, with
minor changes to the code provided in Appendix A.2.

Figure 11 shows that the scaling approach is effective in re-
moving local maxima, or at least in significantly decreasing their
magnitude. It also reduces another shape artefact that some MLC
functions may have, namely falling off very quickly in the vicin-
ity of the associated vertex, which in turn implies too little local
impact of these coordinate functions. As shown in Fig. 12 (top in-
sets), this can lead to artefacts in MLC-based deformations, which
disappear when using SMLC. MVC functions associated with con-
cave vertices also tend to suffer from this phenomenon. This causes
other neighbouring coordinate functions to grow too quickly close
to concave vertices and thus having too much impact on the de-
formation. The resulting artefacts (bottom insets in Fig. 12) get
even worse when using IC with an increasing number of iterations.
While the MLC-based deformation has similar problems, which are
improved only marginally by the additional scaling step, the defor-
mation using MEC may be considered more natural in this case.
Compared to the HC-based deformation, we observe that the result
using SMLC is the most similar among all shown deformations.

4.2. Interior points

In the context of image deformation, the possibility to add inte-
rior points to the polygon (see Sec. 3.4) can be useful for con-
strained deformation, where certain points in the interior of the
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source MVC IC (k = 10) MLC SMLC MEC HC

Figure 12: Deformation of a source image (left) with different barycentric coordinates, zoom-ins, and examples of basis functions (insets).
The top row shows artefacts caused by basis functions with too much (MVC) or too little (MLC) local influence, which disappear after few
iterations (IC) or with additional scaling (SMLC), respectively. Instead, the artefact of the MVC-based deformation in the bottom row is
amplified as the number of iterations grows, and the scaling step is not as effective in improving the result of the MLC-based deformation.

Figure 13: Deformation of a source image (left) with MLC for a
polygon with an interior point (cf. Fig. 7). The Jacobian determi-
nant plots indicate the lack of C1 continuity at the interior point,
and fold-overs may occur if the displacement is too large (right).

image should not be affected by the deformation (see Fig. 1). How-
ever, as MLC are not C1 at interior points, so neither is the defor-
mation, which can lead to visual artefacts, except if the point con-
straints are placed inside a region of constant colour, as in Fig. 1.

Moreover, interior points do not provide an effective control han-
dle, since moving interior points can lead to fold-overs in the de-
formation, unless the displacement is small (see Fig. 13). A similar
behaviour is known for HC-based deformation [JBPS11, Fig. 9].

5. Conclusion

Despite the intense research on generalized barycentric coordinates
over the last two decades, few constructions give smooth and non-
negative coordinates that are well-defined for arbitrary simple poly-
gons, and with MLC we introduce a new animal to this zoo that
comes with several advantages, but also some limitations. A com-
parison of the properties of different 2D constructions can be found
in Appendix B.

In contrast to harmonic and local barycentric coordinates, MLC
and their gradients can be evaluated efficiently with arbitrary accu-
racy at any point inside the polygon by solving a local convex op-
timization problem. In this respect, MLC are very similar to MEC
and even better, since the gradient and the Hessian of the func-
tion F in (9), which are needed for minimizing F with Newton’s

method, are considerably simpler than those needed for comput-
ing MEC. However, there is one important conceptual difference
between MLC and MEC.

The construction of MEC for non-convex polygons relies on
the choice of suitable prior functions and both options (MEC-1
and MEC-2) presented in [HS08] suffer from lack of global shape
awareness, which can cause severe deformation artefacts (see
Fig. 9). Note that we used MEC-1 in our examples, because the re-
sults obtained with MEC-2 were worse. In the case of MLC, the ex-
tension to non-convex polygons is based on the project-and-smooth
idea from iterative coordinates, which seems better suited for cre-
ating natural-looking deformations and can easily be extended to
become more aware of the global shape of the polygon. However,
while the scaling step proposed in Sec. 4.1 effectively reduces un-
wanted local maxima of the coordinate functions, it does not re-
move all shape artefacts (see Fig. 12), and future work is needed
for refining and improving this approach.

Compared to iterative coordinates [DCH20], one major advan-
tage of MLC is speed. In our experiments, we observed that MLC
are as expensive to compute as IC with k = 4 iterations, but for
certain polygons, k ∈ O(n2) iterations are needed to guarantee the
non-negativity of IC (see Fig. 8 in [DCH20]). Moreover, we are
not aware of any algorithm for computing the gradients of IC, a
problem that appears to increase in difficulty with the number of
iterations.

Another advantage of our construction regards the extension to
higher dimensions. While our smoothing procedure in Sec. 3.2 is
essentially identical (up to an index shift) to a double-smoothing
step of IC, expressing and viewing it the way we do (a first av-
eraging step to get vectors s j associated with edges and a second
averaging step to get back to vectors ti associated with vertices),
renders the extension to 3D and beyond straightforward. However,
for d ≥ 4 it remains future work to work out concrete formulas for
the weights σ1, . . . ,σd that allow us to express the average of the
outward-pointing unit normals of a general hyperspherical simplex
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in terms of a linear combination of the projected vertices v̊1, . . . , v̊d
as in (13) and (15).

On the theoretical side, our construction reveals that the key steps
for constructing non-negative barycentric coordinates that satisfy
the Lagrange property and are linear along the edges are the trans-
lation by −v, the projection P0 onto the unit circle, and the first av-
eraging step A1. In principle, we can use the basic MLC recipe with
M = P0A1M̂ for any non-negative matrix M̂ and using any scheme
for computing non-negative barycentric coordinates λ̂ of the origin
w.r.t. the points V̂ = (V −veT)M = V̊ A1M̂. For example, one could
use MEC without priors for the latter, or consider non-uniform av-
eraging methods to replace our second averaging step A2.

Another interesting line of future research relates to the rather
simple and explicit expressions for the gradients, especially in the
case of BMLC for convex polygons. A deeper analysis, similar to
the one in [FK10], may reveal conditions for guaranteeing the in-
jectivity of the barycentric mapping f in (14).

One inherent limitation of MLC is that they are only continu-
ous across the boundary of the polygon and not defined outside the
convex hull of the polygon. While this is sufficient for cage-based
deformation, it rules out skeleton-based deformation as in [YS19].
Another limitation is the lack of smoothness at interior points, and
it remains future work to find generalized barycentric coordinates
that are at least C1 at interior points.
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Appendix A: Implementation

To facilitate the implementation of our work, this appendix pro-
vides further details and pseudo-code for the evaluation of the co-
ordinate functions and their gradients.

A.1. Basic maximum likelihood coordinates

The pseudo-code in Algo. 1 for computing the BMLC λ(v) of a
point v inside a convex polytope Ω in Rd closely follows the expla-
nation in Sec. 2 and explicitly states how to minimize the convex
function F in (9) using Newton’s method with Armijo line search.
Usually, 3 to 7 iterations suffice to reach the convergence threshold
ε = 10−10, but up to 15 iterations may be required, if v is very close
(at a distance of 10−4 times the diameter of Ω) to the boundary.

Similarly, the pseudo-code in Algo. 2 for computing the gradi-
ents of BMLC sticks to the formulas derived in Sec. 2.1, which
generalize straightforwardly to any dimension d. Note that since
Algo. 1 must be executed in line 3 as part of the gradient computa-
tion, one could easily modify the code to return both λ and ∇λ.
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Algorithm 1 Basic maximum likelihood coordinates

Input: vertices v1, . . . ,vn of a polytope Ω in Rd and point v ∈ Int(Ω)

Output: coordinates λ = (λ1, . . . ,λn) of v w.r.t. Ω and optimal φ ∈ Rd

1: function BMLC(v1, . . . ,vn,v)
2: initialize φ = 0, ε = 10−10, ρ = 0.55, τ = 0.4, and K = 20
3: for i = 1 to n do ▷ translate all vi by −v
4: vi := vi − v
5: F :=−n logn ▷ compute value of F in (9) at initial φ = 0
6: while true do
7: Fnew := 0, g := 0 ∈ Rd , H := 0 ∈ Rd×d

8: for i = 1 to n do ▷ compute gradient g of F at φ

9: ci := n+φTvi, g := g− vi/ci
10: if ∥g∥2 < ε then
11: goto line 22 ▷ exit while loop
12: for i = 1 to n do ▷ compute Hessian H of F at φ

13: H := H + vivTi /c2
i

14: q :=−H−1g ▷ search direction
15: for k = 0 to K do ▷ Armijo line search method [Arm66]
16: φnew := φ+ρkq
17: for i = 1 to n do ▷ compute value of F at φnew
18: Fnew := Fnew − log(n+φTnewvi)

19: if Fnew < F + τρkgTq then
20: goto line 21 ▷ exit for loop
21: φ := φnew, F := Fnew
22: λ := (1/c1, . . . ,1/cn) ▷ see (7)
23: return [λ,φ]

Algorithm 2 Gradient of basic maximum likelihood coordinates

Input: vertices v1, . . . ,vn of a polytope Ω in Rd and point v ∈ Int(Ω)
Output: gradients ∇λ1, . . . ,∇λn of BMLC at v

1: function GRADIENTBMLC(v1, . . . ,vn,v)
2: initialize Gφ := 0 ∈ Rd×d , Gv :=−Id =−diag(1, . . . ,1) ∈ Rd×d

3: [λ,φ] := BMLC(v1, . . . ,vn,v) ▷ BMLC λ of v w.r.t. Ω

4: for i = 1 to n do
5: vi := λi(vi − v), Gφ := Gφ + vivTi , Gv := Gv +λiφvTi
6: G := GvG−1

φ ▷ recall from Sec. 2.1 that Gφ is invertible
7: for i = 1 to n do
8: ∇λi := λi(λiφ−Gvi) ▷ see (12)
9: return (∇λ1, . . . ,∇λn)

A.2. Maximum likelihood coordinates

The pseudo-code in Algo. 3 for computing the MLC λ(v) of a point
v inside an arbitrary simple polygon Ω in R2 closely follows the
derivation in Sec. 3, but with a few modifications that help to sim-
plify and speed up the code.

We first compute the projected vertices v̊i in lines 2–3 as in
Sec. 3, but then deviate from (13) for the computation of the s j
in lines 5–6. More precisely, we omit the multiplications with σ j,
since these factors cancel out when we normalize the s j. In other
words, we use the fact that A1P1 = Ā1P̄1, where

Ā1 =


1 0 · · · 1
1 1 · · · 0
...

. . .
. . .

...
0 · · · 1 1

 , P̄1 = diag
(

1
s̄1
, . . . ,

1
s̄n

)
,

with s̄ j = ∥v̊ j + v̊ j+1∥. We similarly omit the factor 1/2 when com-
puting ti and the projected vertices v̂i in lines 8–9. Note that the

Algorithm 3 Maximum likelihood coordinates

Input: vertices v1, . . . ,vn of a polygon Ω in R2 and point v ∈ Int(Ω)
Output: coordinates λ = (λ1, . . . ,λn) of v w.r.t. Ω

1: function MLC(v1, . . . ,vn,v)
2: for i = 1 to n do ▷ translate by −v and project with P0
3: ṽi := vi − v, ri := ∥ṽi∥, v̊i := ṽi/ri
4: v̊n+1 := v̊1
5: for j = 1 to n do ▷ first averaging step A1 and projection P1
6: s j := v̊ j + v̊ j+1, s̄ j := ∥s j∥, s̊ j := s j/s̄ j ▷ normalized s̊
7: s̊0 := s̊n

8: for i = 1 to n do ▷ second averaging step A2 and projection P2
9: ti := s̊i−1 + s̊i, t̄i := ∥ti∥, v̂i := ti/t̄i

10: t̄n+1 := t̄1
11: [λ̂,φ] := BMLC(v̂1, . . . , v̂n,0) ▷ BMLC λ̂ of the origin w.r.t. Ω̂

12: λ̂0 := λ̂n, λ̂n+1 := λ̂1
13: for i = 1 to n do ▷ entries of the matrix P̄1A2P2
14: αi := 1/(s̄it̄i), βi := 1/(s̄it̄i+1)

15: α0 := αn, β0 := βn

16: W := 0
17: for i = 1 to n do
18: ẘi := αi−1λ̂i−1 +(αi +βi−1)λ̂i +βiλ̂i+1 ▷ ẘ = Ā1P̄1A2P2λ̂

19: wi := ẘi/ri, W :=W +wi ▷ w = P0ẘ
20: λ := (w1/W, . . . ,wn/W ) ▷ normalize w to get λ

21: return λ

statements in lines 4, 7, and 10 (and likewise in lines 12 and 15)
serve to avoid modulo operations to keep the indices in the range
[1, . . . ,n] in the subsequent loops.

After computing the BMLC λ̂ of the origin w.r.t. Ω̂ in line 11,
we split the multiplication of λ̂ with M into three steps. We start
by determining the non-zero entries Ci,i = αi and Ci,i+1 = βi of
the matrix C = P̄1A2P2 in lines 13–14 and then compute first the
weights ẘ = Ā1P̄1A2P2λ̂ and finally w = P0ẘ in lines 17–19. In the
end, we get the MLC λ by normalizing w in line 20.

To understand the pseudo-code in Algo. 4 for computing the gra-
dient of MLC, let us parse it from bottom to top. First recall that

λi =
wi

∑
n
j=1 w j

, wi =
ẘi

ri
, ri = ∥vi − v∥,

so that, by the quotient rule,

∇λi =
∇wi ∑

n
j=1 w j −wi ∑

n
j=1∇w j(

∑
n
j=1 w j

)2 (17)

and

∇wi =
∇ẘiri − ẘi∇ri

r2
i

=
∇ẘiri + ẘiv̊i

r2
i

, (18)

as implemented in lines 29–34.

The gradient of ẘi is then derived by applying the product rule
to the formula in line 18 of Algo. 3,

∇ẘi = αi−1∇λ̂i−1 + λ̂i−1∇αi−1

+(αi +βi−1)∇λ̂i + λ̂i(∇αi +∇βi−1)

+βi∇λ̂i+1 + λ̂i+1∇βi.

(19)

To find the gradients of αi = 1/(s̄it̄i) and βi = 1/(s̄it̄i+1), we recall
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Algorithm 4 Gradient of maximum likelihood coordinates

Input: vertices v1, . . . ,vn of a polygon Ω in R2 and point v ∈ Int(Ω)
Output: gradients ∇λ1, . . . ,∇λn of MLC at v

1: function GRADIENTMLC(v1, . . . ,vn,v)
2: use Algo. 3 to get φ ∈ R2, r, s̄, t̄, λ̂,α,β, ẘ,w ∈ Rn, v̊, s̊, v̂ ∈ (R2)

n

3: for i = 1 to n do ▷ compute ∇v̊
4: ∇v̊i := (v̊iv̊Ti − I2)/ri ▷ see (20)
5: ∇v̊n+1 :=∇v̊1
6: for i = 1 to n do ▷ compute ∇s̊ and auxiliary variables
7: Xi :=∇v̊i +∇v̊i+1, S̊ := (I2 − s̊i s̊Ti )/s̄i
8: ∇s̊i := XiS̊ ▷ see (21)
9: ∇s̊0 :=∇s̊n

10: for i = 1 to n do ▷ compute ∇v̂ and auxiliary variables
11: Yi :=∇s̊i−1 +∇s̊i, V̂ := (I2 − v̂iv̂Ti )/t̄i
12: ∇v̂i := YiV̂ ▷ see (22)
13: Gφ := 0 ∈ R2×2, ∇φ := 0 ∈ R2×2

14: for i = 1 to n do
15: Gφ := Gφ + λ̂2

i v̂iv̂Ti , Gv̂ := λ̂iI2 − λ̂2
i φ v̂Ti

16: ∇φ :=∇φ+∇v̂i Gv̂
17: ∇φ :=∇φ G−1

φ ▷ see (24)
18: for i = 1 to n do
19: ∇λ̂i :=−λ̂2

i (∇φ v̂i +∇v̂i φ) ▷ see (23)
20: for i = 1 to n do ▷ auxiliary variables for ∇α and ∇β

21: xi = Xi s̊i/s̄i, yi = Yiv̂i/t̄i
22: x0 := xn, β0 := βn

23: for i = 1 to n do ▷ auxiliary variables for ∇ẘ
24: ai = αi∇λ̂i − λ̂iαi(xi + yi), ▷ −αi(xi + yi) =∇αi
25: bi = βi−1∇λ̂i − λ̂iβi−1(xi−1 + yi) ▷ −βi(xi + yi+1) =∇βi
26: a0 := an, bn+1 := b1
27: for i = 1 to n do ▷ compute ∇ẘ
28: ∇ẘi := ai−1 +ai +bi +bi+1 ▷ see (19)
29: W := 0, ∇W := 0 ∈ R2

30: for i = 1 to n do ▷ compute ∇w and ∇W
31: ∇wi := (∇ẘiri + ẘiv̊i)/r2

i ▷ see (18)
32: W :=W +wi, ∇W :=∇W +∇wi
33: for i = 1 to n do ▷ compute ∇λ

34: ∇λi := (∇wiW −wi∇W )/W 2 ▷ see (17)
35: return (∇λ1, . . . ,∇λn)

the definition of s̄i and t̄i in lines 6 and 9 of Algo. 3 and realize that

αi =
1

∥v̊i + v̊i+1∥ · ∥s̊i−1 + s̊i∥
, βi =

1
∥v̊i + v̊i+1∥ · ∥s̊i+1 + s̊i∥

are functions that depend on several variables v̊ j and s̊ j . Hence, we
apply the chain rule to express their derivatives w.r.t. v as

∇T
αi =

dαi

dv
=

∂αi

∂v̊i

dv̊i

dv
+

∂αi

∂v̊i+1

dv̊i+1
dv

+
∂αi

∂s̊i−1

ds̊i−1
dv

+
∂αi

∂s̊i

ds̊i

dv
,

∇T
βi =

dβi

dv
=

∂βi

∂v̊i

dv̊i

dv
+

∂βi

∂v̊i+1

dv̊i+1
dv

+
∂βi

∂s̊i

ds̊i

dv
+

∂βi

∂s̊i+1

ds̊i+1
dv

.

The partial derivatives of αi and βi w.r.t. the relevant v̊ j and s̊ j are
found using the quotient rule,

∂αi

∂v̊i
=

∂αi

∂v̊i+1
=

−αis̊Ti
s̄i

,
∂αi

∂s̊i
=

∂αi

∂s̊i−1
=

−αiv̂Ti
t̄i

,

∂βi

∂v̊i
=

∂βi

∂v̊i+1
=

−βis̊Ti
s̄i

,
∂βi

∂s̊i
=

∂βi

∂s̊i+1
=

−βiv̂Ti+1
t̄i+1

,

so that

∇αi =−αi

(
Xis̊i

s̄i
+

Yiv̂i

t̄i

)
, ∇βi =−βi

(
Xis̊i

s̄i
+

Yi+1v̂i+1
t̄i+1

)
,

where

Xi =∇v̊i +∇v̊i+1, Yi =∇s̊i−1 +∇s̊i.

Before working out the formulas for ∇v̊i, ∇s̊i, and ∇λ̂i, observe
that the implementation of (19) is found in lines 20–28 of Algo. 4.

Let us now derive the gradients of

v̊i =
vi − v

∥vi − v∥ , s̊i =
v̊i + v̊i+1

∥v̊i + v̊i+1∥
, v̂i =

s̊i−1 + s̊i

∥s̊i−1 + s̊i∥
.

By the quotient rule, we immediately have

∇v̊i =
v̊iv̊Ti − I2

ri
, (20)

as well as

∂s̊i

∂v̊i
=

∂s̊i

∂v̊i+1
=

I2 − s̊is̊Ti
s̄i

,
∂v̂i

∂s̊i−1
=

∂v̂i

∂s̊i
=

I2 − v̂iv̂Ti
t̄i

.

Using the chain rule, we then get

∇Ts̊i =
ds̊i

dv
=

∂s̊i

∂v̊i

dv̊i

dv
+

∂s̊i

∂v̊i+1

dv̊i+1
dv

(21)

and

∇Tv̂i =
dv̂i

dv
=

∂v̂i

∂s̊i−1

ds̊i−1
dv

+
∂v̂i

∂s̊i

ds̊i

dv
. (22)

Lines 3-12 implement the formulas for these three gradients.

It remains to determine ∇λ̂i. To this end, recall that λ̂ are the
BMLC of the origin w.r.t. the vertices v̂1, . . . , v̂n, hence, by (7),

λ̂i(φ, v̂i) =
1

n+φTv̂i
,

where φ = φ(v̂1, . . . , v̂n) denotes the minimum of the function
F̂(φ) =−∑

n
i=1 log(n+φ

Tv̂i). Since the partial derivatives of λ̂i are

∂λ̂i

∂φ
=−λ̂

2
i v̂Ti ,

∂λ̂i

∂v̂i
=−λ̂

2
i φ

T,

we find, by applying the chain rule, that

∇λ̂i =−λ̂
2
i (∇φ v̂i +∇v̂i φ). (23)

Using the chain rule again, we express the derivative of φ w.r.t. v as

dφ

dv
=

n

∑
i=1

∂φ

∂v̂i

dv̂i

dv
,

and to get the partial derivatives of φ w.r.t. v̂i, we exploit the fact
(cf. Sec. 2.1) that the function

G(φ, v̂1, . . . , v̂n) =
n

∑
i=1

v̂i

n+φTv̂i

as well as its variations w.r.t. v̂i vanish, that is,

dG
dv̂

=
∂G dφ

dv̂
+

∂G
∂v̂

= 0.
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coordinates domain non-negative
exact pointwise evaluation

smoothness comments
coordinates gradient

Wachspress
[Wac75, MBLD02] ✓ ✓ ✓ C∞

discrete harmonic
[PP93, EDD∗95] ✗ ✓ ✓ C∞ also known as

“cotangent weights”

3-point family
[FHK06] (✓) ✓ ✓ C∞ includes Wachspress, discrete

harmonic, and mean value

power
[BLTD16] ✓ ✓ ✓ C∞ extension to non-convex

polygons C0 only

mean value
[Flo03, HF06] ✗ ✓ ✓ C∞ positive inside

convex polygons

positive mean value
[LKCOL07] ✓ ✓ ✓ C0

metric
[MLD05] ✗ ✓ ✓ C∞ polygon can have isolated

interior points and holes

Poisson
[LH13] ✗ ✓ ✓ C∞

Gordon–Wixom
[GW74, Bel06] ✗ ✓ ✓ C0 positive and C∞ inside

convex polygons

positive Gordon–Wixom
[MLS11] ✓ ✓ ✓ C0

blended
[APH17] ✓ ✓ ✓ Ck not continuous with respect

to the polygon’s vertices

5-point family
[YS19] ✗ ✓ ✓ C∞ polygon can be degenerate

iterative
[DCH20] ✓ ✓ ✗ C∞ may need O(n2) iterations

for non-negativity

harmonic
[JMD∗07] ✓ ✗ ✗ C∞ usually approximated

with FEM or BEM

local
[ZDL∗14, TDZ19] ✓ ✗ ✗ C0

maximum entropy
[HS08] ✓ ✓ ✓ C∞ proposed prior functions lack

global shape awareness

maximum likelihood ✓ ✓ ✓ C∞ SMLC extension has a certain
global shape awareness

Table 1: Properties of generalized barycentric coordinates for simple planar polygons.

Solving these equations for ∂φ/∂v̂i = dφ/dv̂i, it follows that

∇φ =
n

∑
i=1

∇v̂iGv̂i G
−1
φ , (24)

where

Gφ =
n

∑
i=1

λ̂
2
i v̂iv̂

T
i , Gv̂i = λ̂iI2 − λ̂

2
i φ v̂Ti .

The implementation of (23) and (24) can be found in lines 13–19.

Appendix B: Comparison of properties

Table 1 provides a summary of the properties of all generalized
barycentric coordinates for simple planar polygons that we are
aware of. The first group consists of coordinates that are well-
defined only for convex polygons, and the last group are compu-
tational coordinates that do not have a closed form.

For the family of 3-point coordinates [FHK06], note that not all
coordinates in this family are non-negative.
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